inseparable from and identical with α -spinasteryl acetate, R_f 0.58. Examination of the benzoate derivative, however, revealed that the material is actually composed of three sterols having R_f 0.34 (I), 0.53 (II), 0.65 (III).

The MS^{4,5} of the isolated sterol mixture indicated that sterol I is a $C_{29}H_{48}O$ sterol (M⁺, m/e 412), containing two double bonds, which exhibited the fragmentation pattern expectable for α -spinasterol. The principal features of this pattern include the loss of a monounsaturated $C_{10}H_{19}$ side chain alone and together with 42 m.u., and the expulsion of butadiene from ring A in dehydroxylated ion species. Sterol II is stigmastenol, $C_{29}H_{50}O$ (M⁺, m/e 414) containing one double bond located in the steroid nucleus. This was evidenced by the total loss of the saturated side chain $C_{10}H_{21}$. Sterol III is stigmastanol, $C_{29}H_{52}O$ (M⁺, m/e 416) which is fully saturated. The observed fragmentations are those expectable for saturated sterols and include products resulting from break down of ring A in the dehydroxylated ion species by a retro-Diels-Alder type of reaction.

The unsaponifiable fraction of the seed fat afforded a sterol mixture which was found to be identical with that isolated from the leaves.

⁵ WULFSON, N. S., ZARETSKII, V. I. and TORGOF, I. V. (1964) Tetrahedron Letters 3015.

Phytochemistry, 1973, Vol. 12, pp. 1181 to 1182. Pergamon Press. Printed in England.

5,4'-DIHYDROXY-3,7-DIMETHOXYFLAVONE FROM AMBROSIA ERIOCENTRA

WERNER HERZ, BEVERLY FITZHENRY and GARY D. ANDERSON
Department of Chemistry, The Florida State University, Tallahassee, Florida, FL 32306, U.S.A.

(Received 8 December 1972. Accepted 28 December 1972)

Key Word Index—Ambrosia eriocentra; Compositae; flavonol; kaempferol 3,7-dimethyl ether.

Plant. Ambrosia eriocentra (Gray) Payne. Source. Collected by R. J. Barr on 3 May 1965, and on 3 May 1967, near Wickenburg, Maricopa County, Arizona. (Barr No. 65-191 and 67-143 on deposit in herbarium of Florida State University.) Previous work. No crystalline sesquiterpene lactones.¹

Isolation and identification. The above-ground parts of Barr No. 65-143, wt 9.8 kg, were extracted with CHCl₃ and worked up in the usual fashion.² The crude gum, wt 31.9 g, was only sparingly soluble in benzene or CHCl₃. It was dissolved in 1:1 C₆H₆-CHCl₃ with the aid of some EtOH and chromatographed over 500 g of silicic acid in the usual manner. 24 g of gum was recovered from the first 41. of eluate; subsequent fractions consisted of gummy mixtures. The gum from the first 41. of eluate was redissolved in

⁴ BUDZIKIEWICZ, H., DJERASSI, C. and WILLIAM, D. H. (1964) Structure Elucidation of Natural Products by Mass Spectrometry, Vol. 2, p. 21, Holden-Day, New York.

¹ Higo, A., Hammam, Z., Timmermann, B. N., Yoshioka, H., Lee, J., Mabry, T. J. and Payne, W. W. (1971) *Phytochemistry* 10, 2241.

² Herz, W. and Högenauer, G. (1962) J. Org. Chem. 27, 905.

 C_6H_6 -CHCl₃ (1:1) with the aid of a few ml of EtOH. Addition of 100 g of silica gel followed by evaporation of solvent gave a free-flowing powder which was placed on a column of 500 g of silicic acid and rechromatographed in the usual manner, 1 l. fractions being collected. The only solid material was found in fractions 91–93 (CHCl₃-MeOH 99:1). Recrystallization afforded 0·25 g of 5,4'-dihydroxy-3,7-dimethoxyflavone, m.p. 246–248° (lit 253–254°, 3 246–247° 4), NMR signals (DMSO- d_6) at 7·91 d and 6·90 d (d 9, d 2d 2 system of H-2', H-3', H-5' and H-6'), 6·62 d and 6·27 d (d 2, d 3 system of H-6 and H-8), 3·82 and 3·78 (two methoxyls), UV d_{max} 352·5 and 267 nm, with added NaOAc 355 and 268 nm, with added AlCl₃ 352·5, 305 and 277 nm, with added NaOAc 395 and 270 nm, with added NaOAc-d3 350 and 267 nm. Direct comparison with an authentic sample of 5,4'-dihydroxy-3,7-dimethoxyflavone supplied by Prof. P. R. Jefferies established identity. Extraction of Barr No. 65-191 gave similar results.

The present report corroborates the findings of Higo et al.¹ that A. eriocentra yields no easily crystallizable homogeneous sesquiterpene lactone components. 5,4'-Dihydroxy-3,7-dimethoxyflavone has previously been isolated from an unnamed new Beyeria species,³ from Alpinia Kumatake,⁴ A. japonica,⁵ Eucryphia lucida,⁶ Cistus ladanifera,⁷ Cheilanthes farinosa⁸ and Larrea cuneifolia,⁹ but not, to the best of our knowledge, from a Composite.

Acknowledgement—We wish to thank Professor P. R. Jefferies for an authentic specimen of 5,4'-dihydroxy-3,7-dimethoxyflavone. This work was supported in part by a grant from the United States Public Health Service (CA-13121).

- ³ JEFFERIES, P. R. and PAYNE, T. G. (1965) Australian J. Chem. 18, 1441.
- ⁴ KIMURA, Y., TAKIDA, M., TAKAHASHI, S. and KIMISHIMA, M. (1967) Yakugaku Zasshi 87, 440.
- ⁵ Kimura, Y., Takida, M. and Takahashi, S. (1967) Yakugaku Zasshi 87, 1132.
- ⁶ BATE-SMITH, E. C., DAVENPORT, S. M. and HARBORNE, J. B. (1967) *Phytochemistry* 6, 1407.
- DE PASCUAL TERESA, J., PORTELA MARCOS, C. and SANCHEZ BEILIDO, I. (1960) An. Quim. 64, 623.
- ⁸ RANGASWAMI, S. and IYER, R. T. (1969) Indian J. Chem. 7, 526.
- ⁹ VALESI, A. G., RODRIGUEZ, E., VANDERVELDE, G. and MABRY, T. J. (1972) Phytochemistry 11, 2821.

Phytochemistry, 1973, Vol. 12, pp. 1182 to 1184. Pergamon Press. Printed in England.

6-PHENYLETHYL-5,6-DIHYDRO-2-PYRONES FROM ANIBA GIGANTIFOLIA*

N. C. Franca, Otto Richard Gottlieb and A. M. Puentes Suarezt

Laboratório de Produtos Naturais da Fundação de Amparo à Pesquisa do Estado de São Paulo, Instituto de Química, Universidade de São Paulo, Brasil

(Received 12 December 1972. Accepted 28 December 1972)

Key Word Index—Aniba gigantifolia; Lauraceae; anibine, substituted (6S)-phenylethyl-5,6-dihydro-2-pyrones.

Several Aniba species contain 4-methoxy-6-styryl-2-pyrones (I).² Metabolites of this type are accompanied in two *Piper* species by dihydro (II) and tetrahydro (III) deriva-

^{*} Part XXV in the series "The Chemistry of Brazilian Lauraceae". For Part XXIV see Ref. 1. Sponsored by Instituto Nacional de Pesquisas da Amazônia, Conselho Nacional de Pesquisas, Manaus.

[†] Multinational Program in Chemistry, Organization of American States, graduate fellow, 1971-1972.

¹ von Bülow, M. V., Franca, N. C., Gottlieb, O. R. and Puentes Suarez, A. M. (1973) *Phytochemistry* 12, in press.

² GOTTLIEB, O. R. (1972) Phytochemistry 11, 1537.